
Chapter 1

Errata for MPI-2

This document was processed on October 1, 2007.

The known corrections to MPI-2 are listed in this document. All page and line numbers
are for the official version of the MPI-2 document available from the MPI Forum home page
at http://www.mpi-forum.org. Information on reporting mistakes in the MPI documents
is also located on the MPI Forum home page.

• Page 24, lines 20-21 read
MPI FINALIZE is collective on MPI COMM WORLD.
but should read
MPI FINALIZE is collective over all connected processes. If no processes were spawned,
accepted or connected then this means over MPI COMM WORLD; otherwise it is col-
lective over the union of all processes that have been and continue to be connected,
as explained in Section 5.5.4.

• Page 27, line 26 reads
must be added to line 3 of page 54.
but should read
must be added to line 3 of page 52.

• Add to page 36, after line 3

3.2.11 MPI GET COUNT with zero-length datatypes

The value returned as the count argument of MPI GET COUNT for a datatype of length
zero where zero bytes have been transferred is zero. If the number of bytes transfered
is greater than zero, MPI UNDEFINED is returned.

Rationale. Zero-length datatypes may be created in a number of cases. In
MPI-2, an important case is MPI TYPE CREATE DARRAY, where the definition of
the particular darry results in an empty block on some MPI process. Programs
written in an SPMD style will not check for this special case and may want to
use MPI GET COUNT to check the status. (End of rationale.)

• Add to page 36, after 3.2.11 (above)

3.2.12 MPI GROUP TRANSLATE RANKS and MPI PROC NULL

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2 CHAPTER 1. ERRATA FOR MPI-2

MPI PROC NULL is a valid rank for input to MPI GROUP TRANSLATE RANKS, which returns
MPI PROC NULL as the translated rank.

• Page 51, after line 43, add

MPI Errhandler MPI Errhandler f2c(MPI Fint errhandler)

MPI Fint MPI Errhandler c2f(MPI Errhandler errhandler)

These were overlooked.

• Page 53, line 7 reads

void cpp_lib_call(MPI::Comm& cpp_comm);

but should read

void cpp_lib_call(MPI::Comm cpp_comm);

• Page 60, Line 1 reads

char name[MPI_MAX_NAME_STRING];

but should read

char name[MPI_MAX_OBJECT_NAME];

since MPI MAX NAME STRING is not an MPI-defined constant.

• Page 61, after line 36. Add the following (paralleling the errata to MPI-1.1):

MPI {COMM,WIN,FILE} GET ERRHANDLER behave as if a new error handler object is
created. That is, once the error handler is no longer needed, MPI ERRHANDLER FREE
should be called with the error handler returned from MPI ERRHANDLER GET or MPI {COMM,WIN,FILE} GET ERRHANDLER
to mark the error handler for deallocation. This provides behavior similar to that of
MPI COMM GROUP and MPI GROUP FREE.

• Page 69, lines 14-15 read
MPI::Datatype MPI::Datatype::Resized(const MPI::Aint lb,
const MPI::Aint extent) const

but should read
MPI::Datatype MPI::Datatype::Create resized(const MPI::Aint lb,
const MPI::Aint extent) const

• On Page 78, after line 27, add:

MPI BYTE should be used to send and receive data that is packed using MPI PACK EXTERNAL.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3

Rationale. MPI PACK EXTERNAL specifies that there is no header on the message
and further specifies the exact format of the data. Since MPI PACK may (and
is allowed to) use a header, the datatype MPI PACKED cannot be used for data
packed with MPI PACK EXTERNAL. (End of rationale.)

• On page 93 after line 48, add

Many of the descriptions of the collective routines provide illustrations in terms of
blocking MPI point-to-point routines. These are intended solely to indicate what
data is sent or received by what process. Many of these examples are not correct MPI
programs; for purposes of simplicity, they often assume infinite buffering.

• Page 94, line 29 reads
are the original sets of of processes.
but should read
are the original sets of processes.

• Page 114, after line 4, add

MPI PROC NULL is a valid target rank in the MPI RMA calls MPI ACCUMULATE, MPI GET,
and MPI PUT. The effect is the same as for MPI PROC NULL in MPI point-to-point
communication.

• Page 116, line 31, reads

void MPI::Win::Get(const void *origin addr, int origin count, const
MPI::Datatype& origin datatype, int target rank, MPI::Aint target disp,
int target count, const MPI::Datatype& target datatype) const

but should read

void MPI::Win::Get(void *origin addr, int origin count, const
MPI::Datatype& origin datatype, int target rank, MPI::Aint target disp,
int target count, const MPI::Datatype& target datatype) const

• Page 120, after line 13:

MPI REPLACE, like the other predefined operations, is defined only for the predefined
MPI datatypes.

Rationale. The rationale for this is that, for consistency, MPI REPLACE should
have the same limitations as the other operations. Extending it to all datatypes
doesn’t provide any real benefit. (End of rationale.)

• Page 162, lines 43–44 curently read
The “in place” option for intracommunicators is specified by passing the value
MPI IN PLACE to the argument sendbuf at the root.
but should read
The “in place” option for intracommunicators is specified by passing the value
MPI IN PLACE to the argument sendbuf at all processes.

• Page 162, line 48 reads

Both groups should provide the same count value.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4 CHAPTER 1. ERRATA FOR MPI-2

but should read

Both groups should provide count and datatype arguments that specify the same type
signature.

• Page 165, lines 4–22 read

IN sendcounts integer array equal to the group size specifying
the number of elements to send to each proces-
sor (integer)

IN sdispls integer array (of length group size). Entry j
specifies the displacement in bytes (relative to
sendbuf) from which to take the outgoing data
destined for process j

IN sendtypes array of datatypes (of length group size). Entry
j specifies the type of data to send to process j
(handle)

OUT recvbuf address of receive buffer (choice)

IN recvcounts integer array equal to the group size specifying
the number of elements that can be received
from each processor (integer)

IN rdispls integer array (of length group size). Entry i
specifies the displacement in bytes (relative to
recvbuf) at which to place the incoming data
from process i

IN recvtypes array of datatypes (of length group size). Entry
i specifies the type of data received from process
i (handle)

but should read

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5

IN sendcounts integer array equal to the group size specifying
the number of elements to send to each proces-
sor (array of integers)

IN sdispls integer array (of length group size). Entry j
specifies the displacement in bytes (relative to
sendbuf) from which to take the outgoing data
destined for process j (array of integers)

IN sendtypes array of datatypes (of length group size). Entry
j specifies the type of data to send to process j
(array of handles)

OUT recvbuf address of receive buffer (choice)

IN recvcounts integer array equal to the group size specifying
the number of elements that can be received
from each processor (array of integers)

IN rdispls integer array (of length group size). Entry i
specifies the displacement in bytes (relative to
recvbuf) at which to place the incoming data
from process i (array of integers)

IN recvtypes array of datatypes (of length group size). Entry
i specifies the type of data received from process
i (array of handles)

• Page 199, after line 11, add:

Advice to implementors. High quality implementations should raise an error
when a keyval that was created by a call to MPI XXX CREATE KEYVAL is used with
an object of the wrong type with a call to MPI YYY GET ATTR, MPI YYY SET ATTR,
MPI YYY DELETE ATTR, or MPI YYY FREE KEYVAL. To do so, it is necessary to
maintain, with each keyval, information on the type of the associated user func-
tion. (End of advice to implementors.)

• Page 204, line 30 reads

bool MPI::Win::Get attr(const MPI::Win& win, int win keyval,
void* attribute val) const

but should read

bool MPI::Win::Get attr(int win keyval, void* attribute val) const

• Page 221, after line 40, add

MPI DISPLACEMENT CURRENT is invalid unless the amode for the file has MPI MODE SEQUENTIAL
set.

• Page 230, line 17, reads

If MPI MODE SEQUENTIAL mode was specified when the file was opened, it is erroneous
to call the routines in this section.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6 CHAPTER 1. ERRATA FOR MPI-2

but should read

If MPI MODE SEQUENTIAL mode was specified when the file was opened, it is erroneous
to call the routines in this section, with the exception of MPI FILE GET BYTE OFFSET.

• Page 250, line 8 reads
with 15 exponent bits, bias = +10383, 112 fraction bits,
but should read
with 15 exponent bits, bias = +16383, 112 fraction bits,

• Page 251, Line 18 reads

MPI_LONG_LONG 8

but should read

MPI_LONG_LONG_INT 8

In addition, the type MPI LONG LONG should be added as an optional type; it is a
synonym for MPI LONG LONG INT.

• Page 253, line 4 reads

typedef MPI::Datarep_extent_function(const MPI::Datatype& datatype,

but should read

typedef void MPI::Datarep_extent_function(const MPI::Datatype& datatype,

• Page 253, lines 22-24 read

typedef MPI::Datarep conversion function(void* userbuf,
MPI::Datatype& datatype, int count, void* filebuf,
MPI::Offset position, void* extra state);

but should read

typedef void MPI::Datarep conversion function(void* userbuf,
MPI::Datatype& datatype, int count, void* filebuf,
MPI::Offset position, void* extra state);

• Page 273, line 24 reads

void Send(void* buf, int count, const MPI::Datatype& type,

but should read

void Send(const void* buf, int count, const MPI::Datatype& type,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

7

• Page 332, lines 23-24 read
MPI::Datatype MPI::Datatype::Resized(const MPI::Aint lb,
const MPI::Aint extent) const

but should read
MPI::Datatype MPI::Datatype::Create resized(const MPI::Aint lb,
const MPI::Aint extent) const

• Page 334, line 22 read

void MPI::Win::Get(const void *origin_addr, int origin_count, const

but should read

void MPI::Win::Get(void *origin_addr, int origin_count, const

• Page 341, line 18 reads

typedef MPI::Datarep_conversion_function(void* userbuf,

but should read

typedef void MPI::Datarep_conversion_function(void* userbuf,

• Page 341, line 22 reads

typedef MPI::Datarep_extent_function(const MPI::Datatype& Datatype,

but should read

typedef void MPI::Datarep_extent_function(const MPI::Datatype& Datatype,

• Page 343, line 44

Remove the const from const MPI::Datatype.

• Page 344, lines 13, 23, 32, 38, and 47

Remove the const from const MPI::Datatype.

• Page 345, lines 5 and 11

Remove the const from const MPI::Datatype.

• Page 346, line 16 reads

// Type: MPI::Errhandler

but should read

// Type: const MPI::Errhandler

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8 CHAPTER 1. ERRATA FOR MPI-2

• Page 354, line 17 reads

void Get version(int& version, int& subversion);

but should read

void Get version(int& version, int& subversion)

• Page 354, lines 25-30 read

Exception::Exception(int error code);

int Exception::Get error code() const;

int Exception::Get error class() const;

const char* Exception::Get error string() const;

but should read

Exception::Exception(int error code)

int Exception::Get error code() const

int Exception::Get error class() const

const char* Exception::Get error string() const

• Page 357, line 24 reads
MPI CART RANK Cartcomm Get rank int rank

but should read
MPI CART RANK Cartcomm Get cart rank int rank

• Page 359, line 27 reads
MPI TOPO TEST Comm Get topo int status

but should read
MPI TOPO TEST Comm Get topology int status

• MPI COMM PARENT instead of MPI COMM GET PARENT (Pending Errata
(see Ballot 3))

Page 179, lines 4-5 change

Thus, the names of MPI COMM WORLD, MPI COMM SELF, and MPI COMM PARENT
will have the default of MPI COMM WORLD, MPI COMM SELF, and MPI COMM PARENT.

to

Thus, the names of MPI COMM WORLD, MPI COMM SELF, and the communica-
tor returned by MPI COMM GET PARENT (if not MPI COMM NULL) will have
the default of MPI COMM WORLD, MPI COMM SELF, and MPI COMM PARENT.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

9

Page 94, line 3-5, change

* The manager is represented as the process with rank 0 in (the remote
* group of) MPI_COMM_PARENT. If the workers need to communicate among
* themselves, they can use MPI_COMM_WORLD.

to

* The manager is represented as the process with rank 0 in (the remote
* group of) the parent communicator. If the workers need to communicate
* among themselves, they can use MPI_COMM_WORLD.

• MPI UNPACK EXTERNAL (Pending Errata (see Ballot 3))

Page 79, Line 11 is

MPI_UNPACK_EXTERNAL (datarep, inbuf, incount, datatype, outbuf, outsize,
position)

but should be

MPI_UNPACK_EXTERNAL (datarep, inbuf, insize, position, outbuf, outcount,
datatype)

• Additional C++ binding errors (Pending Errata (see Ballot 3))

Page 337, line 31-32 reads

bool MPI::Win::Get_attr(const MPI::Win&win, int win_keyval,
void* attribute_val) const

but should read

bool MPI::Win::Get_attr(int win_keyval, void* attribute_val) const

• MPI REQUEST CANCEL used where MPI CANCEL intended (Pending Errata
(see Ballot 3))

On page 172 in section 8.2, change MPI REQUEST CANCEL to MPI CANCEL.

• Intercommunicator collective and datatypes (Pending Errata (see Ballot 3))

Page 163, line 22 reads

Within each group, all processes provide the same recvcounts argument,
and the sum of the recvcounts entries should be the same for the two
groups.

but should read

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10 CHAPTER 1. ERRATA FOR MPI-2

Within each group, all processes provide the same recvcounts argument,
and the sum of the recvcounts entries and datatype should specify the
same type signature for the two groups.

• const in C++ specification of predefined MPI objects (Pending Errata (see Ballot
3))

Page 345, line 37: Remove the const from const MPI::Op.

Page 346, line 20: Remove the const from const MPI::Group.

Page 346, add after line 34:

Advice to implementors. If an implementation does not change the value of
predefined handles while execution of MPI Init, the implementation is free to
define the predefined operation handles as const MPI::Op and the predefined
group handle MPI::GROUP EMPTY as const MPI::Group. Other predefined
handles must not be ”const” because they are allowed as INOUT argument in
the MPI COMM SET NAME/ATTR and MPI TYPE SET NAME/ATTR rou-
tines. (End of advice to implementors.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

